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We make use of several libraries in the following example session, including:

� library(fields)

� library(geoR)

� library(MBA)

� library(spBayes)

There are many different kinds of spatio-temporal data and extensive statistical literature that addresses
most common settings. The approach adopted here applies to the setting where space is viewed as continuous,
but time is taken to be discrete. Put another way, we view the data as a time series of spatial process
realizations and work in the setting of dynamic models. Building upon previous work in the setting of
dynamic models by West and Harrison (1997), several authors, including Tonellato (1997), Stroud et al.
(2001) and Gelfand et al. (2005), proposed dynamic frameworks to model residual spatial and temporal
dependence. These proposed frameworks are flexible and easily extended to accommodate nonstationary
and multivariate outcomes.

1 Dynamic spatio-temporal models

Dynamic linear models, or state-space models, have gained tremendous popularity in recent years in fields
as disparate as engineering, economics, genetics, and ecology. They offer a versatile framework for fitting
several time-varying models (West and Harrison 1997). Gelfand et al. (2005) adapted the dynamic modeling
framework to spatio-temporal models with spatially varying coefficients. Alternative adaptations of dynamic
linear models to space-time data can be found in Stroud et al. (2001) and Tonellato (1997).

Here we consider a fairly basic, yet flexible, formulation. Suppose, yt(s) denotes the observation at
location s and time t. We model yt(s) through a measurement equation that provides a regression speci-
fication with a space-time varying intercept and serially and spatially uncorrelated zero-centered Gaussian
disturbances as measurement error εt(s). Next a transition equation introduces a p×1 coefficient vector, say
βt, which is a purely temporal component (i.e., time-varying regression parameters), and a spatio-temporal
component ut(s). Both these are generated through transition equations, capturing their Markovian depen-
dence in time. While the transition equation of the purely temporal component is akin to usual state-space
modeling, the spatio-temporal component is generated using Gaussian spatial processes. The overall model
is written as

yt(s) = xt(s)
′βt + ut(s) + εt(s), εt(s)

ind.∼ N(0, τ2t ) ;

βt = βt−1 + ηt, ηt
i.i.d.∼ N(0,Ση) ;

ut(s) = ut−1(s) + wt(s), wt(s)
ind.∼ GP (0, Ct(·,θt)) , t = 1, 2, . . . , Nt , (1)

where the abbreviations ind. and i.i.d are independent and independent and identically distributed, re-
spectively. Here xt(s) is a p × 1 vector of predictors and βt is a p × 1 vector of coefficients. In addi-
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tion to an intercept, xt(s) can include location specific variables useful for explaining the variability in
yt(s). The GP (0, Ct(·,θt)) denotes a spatial Gaussian process (a Gaussian process defined over an Eu-
clidean spatial domain; see, e.g., Cressie 1993) with covariance function Ct(·;θt). We customarily specify
Ct(s1, s2;θt) = σ2

t ρ(s1, s2;φt), where θt = {σ2
t , φt} and ρ(·;φ) is a correlation function with φ controlling

the correlation decay and σ2
t represents the spatial variance component. An exponential function is often

used to define the spatial correlation structure, e.g., Ct(s1, s2;θt) = σ2
t exp(−φt‖s1 − s2‖), where ‖s1 − s2‖

is the Euclidean distance between the sites s1 and s2. However, any valid spatial correlation function
could be used, see, e.g., Cressie 1993, Chilés and Delfiner 1999, and Banerjee et al. 2004. We further as-
sume β0 ∼ N(m0,Σ0) and u0(s) ≡ 0, which completes the prior specifications leading to a well-identified
Bayesian hierarchical model and also yield reasonable dependence structures. In practice, estimation of
model parameters are usually very robust to these hyper-prior specifications. Also note that (1) reduces to
a simple spatial regression model for t = 1.

We consider settings where the inferential interest lies in spatial prediction or interpolation over a region
for a set of discrete time points. We also assume that the same locations are monitored for each time point
resulting in a space-time matrix whose rows index the locations and columns index the time points, i.e. the
(i, j)-th element is yj(si). Our algorithm will accommodate the situation where some cells of the space-time
data matrix may have missing observations, as is common in monitoring environmental variables.

2 Data and computing

For this illustrative analysis, we consider monthly temperature data observed on a network of weather
stations between January 2000 and December 2002. For brevity we only consider stations over a portion
of New England. We also have elevation in meters for each station, which will serve as a covariate in the
subsequent analysis. In the code below, N.t is the number of months and n is the number of observations
per month.

> set.seed(1)

> data("NETemp.dat")

> ne.temp <- NETemp.dat

> ne.temp <- ne.temp[ne.temp[, "UTMX"] > 5500000 & ne.temp[, "UTMY"] >

+ 3e+06, ]

> y.t <- ne.temp[, 4:27]

> N.t <- ncol(y.t)

> n <- nrow(y.t)

Here we set some observations to NA to illustrate the predictive ability of this modeling framework. The
true values of the holdout observations are retained for subsequent comparison.

> miss <- sample(1:N.t, 10)

> holdout.station.id <- 5

> y.t.holdout <- y.t[holdout.station.id, miss]

> y.t[holdout.station.id, miss] <- NA

> coords <- as.matrix(ne.temp[, c("UTMX", "UTMY")]/1000)

> max.d <- max(iDist(coords))

> plot(coords, xlab = "Easting (km)", ylab = "Northin (km)")
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Figure 1: Weather station locations.

Next we need to specify priors for the numerous parameters. A variogram analysis for each time step is
useful for guiding prior and hyperparameter specification. In the code below, p is the number of regression
coefficients, i.e., corresponding to the intercept and elevation.

> p <- 2

> starting <- list(beta = rep(0, N.t * p), phi = rep(3/(0.5 * max.d),

+ N.t), sigma.sq = rep(2, N.t), tau.sq = rep(1, N.t), sigma.eta = diag(rep(0.01,

+ p)))

> tuning <- list(phi = rep(0.75, N.t))

> priors <- list(beta.0.Norm = list(rep(0, p), diag(1000, p)), phi.Unif = list(rep(3/(0.9 *

+ max.d), N.t), rep(3/(0.05 * max.d), N.t)), sigma.sq.IG = list(rep(2,

+ N.t), rep(10, N.t)), tau.sq.IG = list(rep(2, N.t), rep(5, N.t)),

+ sigma.eta.IW = list(2, diag(0.001, p)))

Like spMvLM, spDynLM will take a list of symbolic model formula. However, unlike spMvLM, each time step
must have the same covariates, although their values can change over time.

> mods <- lapply(paste(colnames(y.t), "elev", sep = "~"), as.formula)

> n.samples <- 4000

> m.1 <- spDynLM(mods, data = cbind(y.t, ne.temp[, "elev", drop = FALSE]),

+ coords = coords, starting = starting, tuning = tuning, priors = priors,

+ get.fitted = TRUE, cov.model = "exponential", n.samples = n.samples,

+ n.report = 1000)

----------------------------------------

General model description
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----------------------------------------

Model fit with 34 observations in 24 time steps.

Number of missing observations 10.

Number of covariates 2 (including intercept if specified).

Using the exponential spatial correlation model.

Number of MCMC samples 4000.

Priors and hyperpriors:

beta normal:

m_0: 0.000 0.000

Sigma_0:

1000.000 0.000

0.000 1000.000

sigma.sq_t=1 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=1 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=1 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=2 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=2 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=2 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=3 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=3 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=3 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=4 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=4 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=4 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=5 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=5 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=5 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=6 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=6 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=6 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=7 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=7 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=7 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=8 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=8 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=8 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=9 IG hyperpriors shape=2.00000 and scale=10.00000
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tau.sq_t=9 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=9 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=10 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=10 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=10 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=11 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=11 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=11 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=12 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=12 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=12 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=13 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=13 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=13 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=14 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=14 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=14 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=15 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=15 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=15 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=16 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=16 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=16 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=17 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=17 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=17 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=18 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=18 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=18 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=19 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=19 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=19 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=20 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=20 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=20 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=21 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=21 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=21 Unif hyperpriors a=0.00516 and b=0.09281

---
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sigma.sq_t=22 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=22 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=22 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=23 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=23 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=23 Unif hyperpriors a=0.00516 and b=0.09281

---

sigma.sq_t=24 IG hyperpriors shape=2.00000 and scale=10.00000

tau.sq_t=24 IG hyperpriors shape=2.00000 and scale=5.00000

phi_t=24 Unif hyperpriors a=0.00516 and b=0.09281

---

-------------------------------------------------

Sampling

-------------------------------------------------

Sampled: 999 of 4000, 24.98%

Report interval Mean Metrop. Acceptance rate: 77.58%

Overall Metrop. Acceptance rate: 77.66%

-------------------------------------------------

Sampled: 1999 of 4000, 49.98%

Report interval Mean Metrop. Acceptance rate: 77.81%

Overall Metrop. Acceptance rate: 77.73%

-------------------------------------------------

Sampled: 2999 of 4000, 74.97%

Report interval Mean Metrop. Acceptance rate: 77.85%

Overall Metrop. Acceptance rate: 77.77%

-------------------------------------------------

Sampled: 3999 of 4000, 99.97%

Report interval Mean Metrop. Acceptance rate: 77.30%

Overall Metrop. Acceptance rate: 77.65%

-------------------------------------------------

> burn.in <- floor(0.75 * n.samples)

> quant <- function(x) {

+ quantile(x, prob = c(0.5, 0.025, 0.975))

+ }

> beta <- apply(m.1$p.beta.samples[burn.in:n.samples, ], 2, quant)

> beta.0 <- beta[, grep("Intercept", colnames(beta))]

> beta.1 <- beta[, grep("elev", colnames(beta))]

> par(mfrow = c(2, 1))

> plot(1:N.t, beta.0[1, ], pch = 19, cex = 0.5, xlab = "months", ylab = "beta.0",

+ ylim = range(beta.0))

> arrows(1:N.t, beta.0[1, ], 1:N.t, beta.0[3, ], length = 0.02, angle = 90)

> arrows(1:N.t, beta.0[1, ], 1:N.t, beta.0[2, ], length = 0.02, angle = 90)

> plot(1:N.t, beta.1[1, ], pch = 19, cex = 0.5, xlab = "months", ylab = "beta.1",

+ ylim = range(beta.1))

> arrows(1:N.t, beta.1[1, ], 1:N.t, beta.1[3, ], length = 0.02, angle = 90)

> arrows(1:N.t, beta.1[1, ], 1:N.t, beta.1[2, ], length = 0.02, angle = 90)

> theta <- apply(m.1$p.theta.samples[burn.in:n.samples, ], 2, quant)

> sigma.sq <- theta[, grep("sigma.sq", colnames(theta))]
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Figure 2: Evolution of the regression coefficients.
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Figure 3: Evolution of the spatial covariance parameters.

> tau.sq <- theta[, grep("tau.sq", colnames(theta))]

> phi <- theta[, grep("phi", colnames(theta))]

> par(mfrow = c(3, 1))

> plot(1:N.t, sigma.sq[1, ], pch = 19, cex = 0.5, xlab = "months",

+ ylab = "sigma.sq", ylim = range(sigma.sq))

> arrows(1:N.t, sigma.sq[1, ], 1:N.t, sigma.sq[3, ], length = 0.02,

+ angle = 90)

> arrows(1:N.t, sigma.sq[1, ], 1:N.t, sigma.sq[2, ], length = 0.02,

+ angle = 90)

> plot(1:N.t, tau.sq[1, ], pch = 19, cex = 0.5, xlab = "months", ylab = "tau.sq",

+ ylim = range(tau.sq))

> arrows(1:N.t, tau.sq[1, ], 1:N.t, tau.sq[3, ], length = 0.02, angle = 90)

> arrows(1:N.t, tau.sq[1, ], 1:N.t, tau.sq[2, ], length = 0.02, angle = 90)

> plot(1:N.t, 3/phi[1, ], pch = 19, cex = 0.5, xlab = "months", ylab = "eff. range (km)",

+ ylim = range(3/phi))

> arrows(1:N.t, 3/phi[1, ], 1:N.t, 3/phi[3, ], length = 0.02, angle = 90)

> arrows(1:N.t, 3/phi[1, ], 1:N.t, 3/phi[2, ], length = 0.02, angle = 90)

> y.hat <- apply(m.1$p.y.samples[, burn.in:n.samples], 1, quant)

> y.hat.med <- matrix(y.hat[1, ], ncol = N.t)

> y.hat.up <- matrix(y.hat[3, ], ncol = N.t)

> y.hat.low <- matrix(y.hat[2, ], ncol = N.t)

> y.obs <- as.vector(as.matrix(y.t[-holdout.station.id, -miss]))
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Figure 4: Fitted values (left) and holdout predicted values (right).

> y.obs.hat.med <- as.vector(y.hat.med[-holdout.station.id, -miss])

> y.obs.hat.up <- as.vector(y.hat.up[-holdout.station.id, -miss])

> y.obs.hat.low <- as.vector(y.hat.low[-holdout.station.id, -miss])

> y.ho <- as.matrix(y.t.holdout)

> y.ho.hat.med <- as.vector(y.hat.med[holdout.station.id, miss])

> y.ho.hat.up <- as.vector(y.hat.up[holdout.station.id, miss])

> y.ho.hat.low <- as.vector(y.hat.low[holdout.station.id, miss])

> par(mfrow = c(1, 2))

> plot(y.obs, y.obs.hat.med, pch = 19, cex = 0.5, xlab = "observed",

+ ylab = "fitted", main = "Observed vs. fitted")

> arrows(y.obs, y.obs.hat.med, y.obs, y.obs.hat.up, length = 0.02,

+ angle = 90)

> arrows(y.obs, y.obs.hat.med, y.obs, y.obs.hat.low, length = 0.02,

+ angle = 90)

> lines(-50:50, -50:50, col = "blue")

> plot(y.ho, y.ho.hat.med, pch = 19, cex = 0.5, xlab = "observed",

+ ylab = "predicted", , main = "Observed vs. predicted")

> arrows(y.ho, y.ho.hat.med, y.ho, y.ho.hat.up, length = 0.02, angle = 90)

> arrows(y.ho, y.ho.hat.med, y.ho, y.ho.hat.low, length = 0.02, angle = 90)

> lines(-50:50, -50:50, col = "blue")
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