Groups
There are no groups associated with this dataset
There are no groups associated with this dataset
Current Site Packages Directory:
/usr/lib/ckan/default/lib/python3.10/site-packages
Package | Version | Homepage | Summary |
---|---|---|---|
alabaster | 0.7.16 | None | A light, configurable Sphinx theme |
alembic | 1.13.2 | https://alembic.sqlalchemy.org | A database migration tool for SQLAlchemy. |
arrow | 1.3.0 | None | Better dates & times for Python |
asttokens | 3.0.0 | https://github.com/gristlabs/asttokens | Annotate AST trees with source code positions |
async-timeout | 4.0.3 | https://github.com/aio-libs/async-timeout | Timeout context manager for asyncio programs |
autocommand | 2.2.2 | https://github.com/Lucretiel/autocommand | A library to create a command-line program from a function |
Babel | 2.15.0 | https://babel.pocoo.org/ | Internationalization utilities |
backports.tarfile | 1.2.0 | None | Backport of CPython tarfile module |
beautifulsoup4 | 4.12.3 | None | Screen-scraping library |
binaryornot | 0.4.4 | https://github.com/audreyr/binaryornot | Ultra-lightweight pure Python package to check if a file is binary or text. |
bleach | 6.1.0 | https://github.com/mozilla/bleach | An easy safelist-based HTML-sanitizing tool. |
blinker | 1.8.2 | None | Fast, simple object-to-object and broadcast signaling |
build | 1.2.2.post1 | None | A simple, correct Python build frontend |
cachelib | 0.13.0 | https://github.com/pallets-eco/cachelib/ | A collection of cache libraries in the same API interface. |
certifi | 2024.7.4 | https://github.com/certifi/python-certifi | Python package for providing Mozilla's CA Bundle. |
chardet | 5.2.0 | https://github.com/chardet/chardet | Universal encoding detector for Python 3 |
charset-normalizer | 3.3.2 | https://github.com/Ousret/charset_normalizer | The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet. |
ckan | 2.11.2 | http://ckan.org/ | CKAN Software |
click | 8.1.7 | https://palletsprojects.com/p/click/ | Composable command line interface toolkit |
cookiecutter | 2.6.0 | https://github.com/cookiecutter/cookiecutter | A command-line utility that creates projects from project templates, e.g. creating a Python package project from a Python package project template. |
coverage | 7.6.12 | https://github.com/nedbat/coveragepy | Code coverage measurement for Python |
coveralls | 4.0.1 | http://github.com/TheKevJames/coveralls-python | Show coverage stats online via coveralls.io |
decorator | 5.2.1 | None | Decorators for Humans |
docopt | 0.6.2 | http://docopt.org | Pythonic argument parser, that will make you smile |
docutils | 0.20.1 | https://docutils.sourceforge.io/ | Docutils -- Python Documentation Utilities |
dominate | 2.9.1 | None | Dominate is a Python library for creating and manipulating HTML documents using an elegant DOM API. |
exceptiongroup | 1.2.2 | None | Backport of PEP 654 (exception groups) |
executing | 2.2.0 | https://github.com/alexmojaki/executing | Get the currently executing AST node of a frame, and other information |
factory-boy | 3.3.0 | https://github.com/FactoryBoy/factory_boy | A versatile test fixtures replacement based on thoughtbot's factory_bot for Ruby. |
Faker | 26.0.0 | https://github.com/joke2k/faker | Faker is a Python package that generates fake data for you. |
feedgen | 1.0.0 | https://lkiesow.github.io/python-feedgen | Feed Generator (ATOM, RSS, Podcasts) |
Flask | 3.0.3 | None | A simple framework for building complex web applications. |
flask-babel | 4.0.0 | https://github.com/python-babel/flask-babel | Adds i18n/l10n support for Flask applications. |
Flask-DebugToolbar | 0.15.1 | https://github.com/pallets-eco/flask-debugtoolbar | A toolbar overlay for debugging Flask applications. |
Flask-Login | 0.6.3 | https://github.com/maxcountryman/flask-login | User authentication and session management for Flask. |
Flask-Session | 0.8.0 | None | Server-side session support for Flask |
Flask-WTF | 1.2.1 | None | Form rendering, validation, and CSRF protection for Flask with WTForms. |
freezegun | 1.5.1 | https://github.com/spulec/freezegun | Let your Python tests travel through time |
greenlet | 3.0.3 | https://greenlet.readthedocs.io/ | Lightweight in-process concurrent programming |
idna | 3.7 | None | Internationalized Domain Names in Applications (IDNA) |
imagesize | 1.4.1 | https://github.com/shibukawa/imagesize_py | Getting image size from png/jpeg/jpeg2000/gif file |
importlib_metadata | 8.0.0 | None | Read metadata from Python packages |
importlib_metadata | 8.0.0 | None | Read metadata from Python packages |
incremental | 24.7.2 | None | A small library that versions your Python projects. |
inflect | 7.3.1 | None | Correctly generate plurals, singular nouns, ordinals, indefinite articles |
inflection | 0.5.1 | https://github.com/jpvanhal/inflection | A port of Ruby on Rails inflector to Python |
iniconfig | 2.0.0 | None | brain-dead simple config-ini parsing |
ipdb | 0.13.13 | https://github.com/gotcha/ipdb | IPython-enabled pdb |
ipython | 8.34.0 | None | IPython: Productive Interactive Computing |
itsdangerous | 2.2.0 | None | Safely pass data to untrusted environments and back. |
jaraco.collections | 5.1.0 | None | Collection objects similar to those in stdlib by jaraco |
jaraco.context | 5.3.0 | https://github.com/jaraco/jaraco.context | Useful decorators and context managers |
jaraco.functools | 4.0.1 | None | Functools like those found in stdlib |
jaraco.text | 3.12.1 | None | Module for text manipulation |
jedi | 0.19.2 | https://github.com/davidhalter/jedi | An autocompletion tool for Python that can be used for text editors. |
Jinja2 | 3.1.5 | None | A very fast and expressive template engine. |
lxml | 5.2.2 | https://lxml.de/ | Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API. |
Mako | 1.3.5 | https://www.makotemplates.org/ | A super-fast templating language that borrows the best ideas from the existing templating languages. |
Markdown | 3.6 | None | Python implementation of John Gruber's Markdown. |
markdown-it-py | 3.0.0 | None | Python port of markdown-it. Markdown parsing, done right! |
MarkupSafe | 2.1.5 | https://palletsprojects.com/p/markupsafe/ | Safely add untrusted strings to HTML/XML markup. |
matplotlib-inline | 0.1.7 | None | Inline Matplotlib backend for Jupyter |
mdurl | 0.1.2 | None | Markdown URL utilities |
more-itertools | 10.3.0 | None | More routines for operating on iterables, beyond itertools |
msgspec | 0.18.6 | https://jcristharif.com/msgspec/ | A fast serialization and validation library, with builtin support for JSON, MessagePack, YAML, and TOML. |
mypy | 1.10.1 | https://www.mypy-lang.org/ | Optional static typing for Python |
mypy-extensions | 1.0.0 | https://github.com/python/mypy_extensions | Type system extensions for programs checked with the mypy type checker. |
packaging | 24.1 | None | Core utilities for Python packages |
packaging | 24.2 | None | Core utilities for Python packages |
parso | 0.8.4 | https://github.com/davidhalter/parso | A Python Parser |
passlib | 1.7.4 | https://passlib.readthedocs.io | comprehensive password hashing framework supporting over 30 schemes |
pexpect | 4.9.0 | https://pexpect.readthedocs.io/ | Pexpect allows easy control of interactive console applications. |
pillow | 10.4.0 | None | Python Imaging Library (Fork) |
pip | 25.0.1 | None | The PyPA recommended tool for installing Python packages. |
pip-tools | 7.4.1 | None | pip-tools keeps your pinned dependencies fresh. |
platformdirs | 4.2.2 | None | A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`. |
pluggy | 1.5.0 | https://github.com/pytest-dev/pluggy | plugin and hook calling mechanisms for python |
polib | 1.2.0 | https://github.com/izimobil/polib/ | A library to manipulate gettext files (po and mo files). |
prompt_toolkit | 3.0.50 | https://github.com/prompt-toolkit/python-prompt-toolkit | Library for building powerful interactive command lines in Python |
psycopg2 | 2.9.9 | https://psycopg.org/ | psycopg2 - Python-PostgreSQL Database Adapter |
ptyprocess | 0.7.0 | https://github.com/pexpect/ptyprocess | Run a subprocess in a pseudo terminal |
pure_eval | 0.2.3 | http://github.com/alexmojaki/pure_eval | Safely evaluate AST nodes without side effects |
Pygments | 2.19.1 | None | Pygments is a syntax highlighting package written in Python. |
PyJWT | 2.8.0 | https://github.com/jpadilla/pyjwt | JSON Web Token implementation in Python |
pyparsing | 3.1.2 | None | pyparsing module - Classes and methods to define and execute parsing grammars |
pyproject_hooks | 1.2.0 | None | Wrappers to call pyproject.toml-based build backend hooks. |
pysolr | 3.9.0 | https://github.com/django-haystack/pysolr/ | Lightweight Python client for Apache Solr |
pytest | 8.2.2 | None | pytest: simple powerful testing with Python |
pytest-cov | 5.0.0 | https://github.com/pytest-dev/pytest-cov | Pytest plugin for measuring coverage. |
pytest-factoryboy | 2.7.0 | https://pytest-factoryboy.readthedocs.io/ | Factory Boy support for pytest. |
pytest-freezegun | 0.4.2 | https://github.com/ktosiek/pytest-freezegun | Wrap tests with fixtures in freeze_time |
pytest-rerunfailures | 14.0 | None | pytest plugin to re-run tests to eliminate flaky failures |
pytest-split | 0.9.0 | https://jerry-git.github.io/pytest-split | Pytest plugin which splits the test suite to equally sized sub suites based on test execution time. |
python-dateutil | 2.9.0.post0 | https://github.com/dateutil/dateutil | Extensions to the standard Python datetime module |
python-magic | 0.4.27 | http://github.com/ahupp/python-magic | File type identification using libmagic |
python-slugify | 8.0.4 | https://github.com/un33k/python-slugify | A Python slugify application that also handles Unicode |
pytz | 2024.1 | http://pythonhosted.org/pytz | World timezone definitions, modern and historical |
PyYAML | 6.0.1 | https://pyyaml.org/ | YAML parser and emitter for Python |
redis | 5.0.7 | https://github.com/redis/redis-py | Python client for Redis database and key-value store |
requests | 2.32.3 | https://requests.readthedocs.io | Python HTTP for Humans. |
responses | 0.25.3 | https://github.com/getsentry/responses | A utility library for mocking out the `requests` Python library. |
rich | 13.9.4 | https://github.com/Textualize/rich | Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal |
rq | 1.16.2 | None | RQ is a simple, lightweight, library for creating background jobs, and processing them. |
setuptools | 76.0.0 | None | Easily download, build, install, upgrade, and uninstall Python packages |
simplejson | 3.19.2 | https://github.com/simplejson/simplejson | Simple, fast, extensible JSON encoder/decoder for Python |
six | 1.16.0 | https://github.com/benjaminp/six | Python 2 and 3 compatibility utilities |
snowballstemmer | 2.2.0 | https://github.com/snowballstem/snowball | This package provides 29 stemmers for 28 languages generated from Snowball algorithms. |
soupsieve | 2.6 | None | A modern CSS selector implementation for Beautiful Soup. |
Sphinx | 7.3.7 | None | Python documentation generator |
sphinx-rtd-theme | 2.0.0 | https://github.com/readthedocs/sphinx_rtd_theme | Read the Docs theme for Sphinx |
sphinxcontrib-applehelp | 2.0.0 | None | sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books |
sphinxcontrib-devhelp | 2.0.0 | None | sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp documents |
sphinxcontrib-htmlhelp | 2.1.0 | None | sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files |
sphinxcontrib-jquery | 4.1 | None | Extension to include jQuery on newer Sphinx releases |
sphinxcontrib-jsmath | 1.0.1 | http://sphinx-doc.org/ | A sphinx extension which renders display math in HTML via JavaScript |
sphinxcontrib-qthelp | 2.0.0 | None | sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp documents |
sphinxcontrib-serializinghtml | 2.0.0 | None | sphinxcontrib-serializinghtml is a sphinx extension which outputs "serialized" HTML files (json and pickle) |
SQLAlchemy | 1.4.52 | https://www.sqlalchemy.org | Database Abstraction Library |
sqlalchemy2-stubs | 0.0.2a38 | http://www.sqlalchemy.org | Typing Stubs for SQLAlchemy 1.4 |
sqlparse | 0.5.0 | None | A non-validating SQL parser. |
stack-data | 0.6.3 | http://github.com/alexmojaki/stack_data | Extract data from python stack frames and tracebacks for informative displays |
text-unidecode | 1.3 | https://github.com/kmike/text-unidecode/ | The most basic Text::Unidecode port |
toml | 0.10.2 | https://github.com/uiri/toml | Python Library for Tom's Obvious, Minimal Language |
tomli | 2.0.1 | None | A lil' TOML parser |
tomli | 2.0.1 | None | A lil' TOML parser |
towncrier | 23.11.0 | None | Building newsfiles for your project. |
traitlets | 5.14.3 | None | Traitlets Python configuration system |
typeguard | 4.3.0 | None | Run-time type checker for Python |
types-python-dateutil | 2.9.0.20241206 | https://github.com/python/typeshed | Typing stubs for python-dateutil |
typing_extensions | 4.12.2 | None | Backported and Experimental Type Hints for Python 3.8+ |
typing_extensions | 4.12.2 | None | Backported and Experimental Type Hints for Python 3.8+ |
tzlocal | 5.2 | None | tzinfo object for the local timezone |
urllib3 | 2.2.2 | None | HTTP library with thread-safe connection pooling, file post, and more. |
uWSGI | 2.0.28 | https://uwsgi-docs.readthedocs.io/en/latest/ | The uWSGI server |
watchdog | 4.0.1 | https://github.com/gorakhargosh/watchdog | Filesystem events monitoring |
wcwidth | 0.2.13 | https://github.com/jquast/wcwidth | Measures the displayed width of unicode strings in a terminal |
webassets | 2.0 | http://github.com/miracle2k/webassets/ | Media asset management for Python, with glue code for various web frameworks |
webencodings | 0.5.1 | https://github.com/SimonSapin/python-webencodings | Character encoding aliases for legacy web content |
Werkzeug | 3.0.6 | None | The comprehensive WSGI web application library. |
wheel | 0.45.1 | None | A built-package format for Python |
wheel | 0.43.0 | None | A built-package format for Python |
WTForms | 3.1.2 | None | Form validation and rendering for Python web development. |
zipp | 3.19.2 | None | Backport of pathlib-compatible object wrapper for zip files |
zipp | 3.19.2 | None | Backport of pathlib-compatible object wrapper for zip files |
zope.interface | 6.4.post2 | https://github.com/zopefoundation/zope.interface | Interfaces for Python |
Resource | Value |
---|---|
User CPU time | 58.274 msec |
System CPU time | 6.623 msec |
Total CPU time | 64.897 msec |
Elapsed time | 75.820 msec |
Context switches | 63 voluntary, 1 involuntary |
Key | Value |
---|---|
HTTP_ACCEPT | */* |
HTTP_ACCEPT_ENCODING | gzip, br, zstd, deflate |
HTTP_CONNECTION | close |
HTTP_HOST | 192.168.122.4 |
HTTP_USER_AGENT | Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com) |
QUERY_STRING | |
REMOTE_ADDR | 127.0.0.1 |
REQUEST_METHOD | GET |
SCRIPT_NAME | |
SERVER_NAME | niasra-ckan |
SERVER_PORT | 8080 |
SERVER_PROTOCOL | HTTP/1.0 |
View Function | args | kwargs |
---|---|---|
ckan.views.dataset.groups | [] | id=global-elus, package_type=dataset |
Variable | Value |
---|---|
'ckan' | 'eyJfY3NyZl90b2tlbiI6IjAzNDk2MzUzYzU2NmY0YzI2YmZiOTBlMmE2NWY3NjI4ZTIxMjkyN2EifQ.aAPZpw.g50CB4wPFvA4iwRm1Bk73J81wzU' |
Variable | Value |
---|---|
'_csrf_token' | '03496353c566f4c26bfb90e2a65f7628e212927a' |
'_permanent' | True |
'_fresh' | False |
Variable | Value |
---|
Variable | Value |
---|
Key | Value |
---|---|
__file__ | '/etc/ckan/default/ckan.ini' |
api_token.jwt.algorithm | 'HS256' |
api_token.jwt.decode.secret | 'string:OuonVd5Md43IixzaojMJc6OV1Pk' |
api_token.jwt.encode.secret | 'string:OuonVd5Md43IixzaojMJc6OV1Pk' |
api_token.nbytes | 32 |
apitoken_header_name | 'Authorization' |
APPLICATION_ROOT | '/' |
BABEL_DEFAULT_TIMEZONE | 'UTC' |
BABEL_DOMAIN | 'ckan' |
BABEL_TRANSLATION_DIRECTORIES | '/usr/lib/ckan/default/lib/python3.10/site-packages/ckan/i18n' |
ckan.activity_list_limit | 31 |
ckan.activity_list_limit_max | 100 |
ckan.activity_streams_email_notifications | False |
ckan.activity_streams_enabled | True |
ckan.auth.allow_admin_collaborators | True |
ckan.auth.allow_collaborators_to_change_owner_org | True |
ckan.auth.allow_dataset_collaborators | True |
ckan.auth.anon_create_dataset | True |
ckan.auth.create_dataset_if_not_in_organization | True |
ckan.auth.create_default_api_keys | False |
ckan.auth.create_unowned_dataset | True |
ckan.auth.create_user_via_api | True |
ckan.auth.create_user_via_web | True |
ckan.auth.enable_cookie_auth_in_api | True |
ckan.auth.login_view | 'user.login' |
ckan.auth.public_activity_stream_detail | True |
ckan.auth.public_user_details | True |
ckan.auth.reveal_private_datasets | True |
ckan.auth.roles_that_cascade_to_sub_groups | ['admin'] |
ckan.auth.route_after_login | 'dashboard.datasets' |
ckan.auth.user_create_groups | True |
ckan.auth.user_create_organizations | True |
ckan.auth.user_delete_groups | True |
ckan.auth.user_delete_organizations | True |
ckan.base_public_folder | 'public' |
ckan.base_templates_folder | 'templates' |
ckan.cache_enabled | False |
ckan.cache_expires | 0 |
ckan.cors.origin_allow_all | False |
ckan.cors.origin_whitelist | [] |
ckan.csrf_protection.ignore_extensions | True |
ckan.dataset.create_on_ui_requires_resources | True |
ckan.datasets_per_page | 20 |
ckan.datastore.default_fts_index_field_types | ['text', 'tsvector'] |
ckan.datastore.default_fts_index_method | 'gist' |
ckan.datastore.default_fts_lang | 'english' |
ckan.datastore.read_url | 'postgresql://datastore_default:ckanniasra123!@localhost/datastore_default' |
ckan.datastore.search.rows_default | 100 |
ckan.datastore.search.rows_max | 32000 |
ckan.datastore.sqlalchemy.pool_pre_ping | True |
ckan.datastore.sqlsearch.allowed_functions_file | '/usr/lib/ckan/default/lib/python3.10/site-packages/ckanext/datastore/allowed_functions.txt' |
ckan.datastore.sqlsearch.enabled | False |
ckan.datastore.write_url | 'postgresql://ckan_default:ckanniasra123!@localhost/datastore_default' |
ckan.debug_supress_header | False |
ckan.default.group_type | 'group' |
ckan.default.organization_type | 'organization' |
ckan.default.package_type | 'dataset' |
ckan.default_group_sort | 'title' |
ckan.devserver.host | 'localhost' |
ckan.devserver.multiprocess | 1 |
ckan.devserver.port | 5000 |
ckan.devserver.ssl_cert | '' |
ckan.devserver.ssl_key | '' |
ckan.devserver.threaded | True |
ckan.devserver.watch_patterns | [] |
ckan.display_timezone | 'UTC' |
ckan.download_proxy | '' |
ckan.email_notifications_since | '2 days' |
ckan.extra_resource_fields | [] |
ckan.favicon | '/base/images/ckan.ico' |
ckan.featured_groups | [] |
ckan.featured_orgs | [] |
ckan.feeds.author_link | '' |
ckan.feeds.author_name | '' |
ckan.feeds.authority_name | '' |
ckan.feeds.date | '' |
ckan.feeds.limit | 20 |
ckan.gravatar_default | 'identicon' |
ckan.group_and_organization_list_all_fields_max | 25 |
ckan.group_and_organization_list_max | 1000 |
ckan.hide_activity_from_users | ['niasra-ckan'] |
ckan.hide_version | False |
ckan.i18n.extra_directory | '' |
ckan.i18n.extra_gettext_domain | '' |
ckan.i18n.extra_locales | [] |
ckan.i18n.rtl_languages | ['he', 'ar', 'fa_IR'] |
ckan.i18n.rtl_theme | 'css/main-rtl' |
ckan.i18n_directory | '' |
ckan.jobs.timeout | 180 |
ckan.legacy_route_mappings | '{}' |
ckan.locale_default | 'en' |
ckan.locale_order | [] |
ckan.locales_filtered_out | [] |
ckan.locales_offered | [] |
ckan.max_image_size | 50 |
ckan.max_resource_size | 10240 |
ckan.mimetype_guess | 'file_ext' |
ckan.plugins | ['activity', 'datastore'] |
ckan.recaptcha.privatekey | '' |
ckan.recaptcha.publickey | '' |
ckan.redis.url | 'redis://localhost:6379/0' |
ckan.requests.timeout | 5 |
ckan.resource_formats | '/usr/lib/ckan/default/lib/python3.10/site-packages/ckan/config/resource_formats.json' |
ckan.root_path | '/ckan/{{LANG}}' |
ckan.search.default_include_private | True |
ckan.search.default_package_sort | 'score desc, metadata_modified desc' |
ckan.search.remove_deleted_packages | True |
ckan.search.rows_max | 1000 |
ckan.search.show_all_types | 'dataset' |
ckan.search.solr_allowed_query_parsers | [] |
ckan.search.solr_commit | True |
ckan.site_about | 'INTRODUCTION BY DIRECTOR: PROFESSOR Marijka Batterham \r\n----------------------\r\n\r\nThe National Institute for Applied Statistics Research Australia (NIASRA) at the University of Wollongong aims to identify Australia as a place where the discipline of applied statistics collaborates with academics and professionals in science, government, business and industry to tackle strategic problems. Methods for obtaining relevant and reliable data and methods that can be used to extract the information and evidence that the data can provide are fundamental in solving important and complex problems facing society. The huge increase in data available in all fields and relating to every issue challenging a modern society means that there are large gaps between the methods needed to fully exploit these data and the methods available to do so. New statistical methods are needed to handle uncertainty and risk in large and complex data structures and to generate knowledge that can be acted upon. NIASRA is undertaking a program of research developing new statistical methods for obtaining and analysing data relevant to agriculture, energy, engineering, environmental sciences, finance, health, medicine, mining, natural resources, and social sciences. The Institute aims to provide leading-edge research and consulting capacity in applied statistics for Australia and our region through the skills and activities of its staff and research students. \r\n \r\n\r\nNIASRA is committed to developing and applying innovative statistical methods to important problems. It conducts: \r\n\r\n- fundamental methodological research; \r\n- industry-focused and contract research; \r\n- major consulting projects;\r\n- professional education and training. \r\n \r\nNIASRA’s research is focused in Biometry and Bioinformatics, Environmental Informatics, Survey Methodology, and also research in Statistical Education and Statistical and Mathematical Methodology in Finance. It is led by Director Prof David Steel and includes: \r\n\r\n- Centre for Bioinformatics and Biometrics Research – Director Prof Brian Cullis;\r\n- Centre for Environmental Informatics – Director Distinguished Prof Noel Cressie;\r\n- Centre for Sample Survey Methodology – Director Prof Ray Chambers;\r\n- Statistical Consulting Centre - Director A/Professor Marijka Batterham, focussing on support for research within the University in design and analysis.\r\n \r\nThe institute is a Research Strength of the University of Wollongong and has over 20 academic staff members and 25 research students. It has been successful in developing long-term collaborative partnerships. It has two externally funded research professors: Professor Chambers is funded by the Australian Bureau of Statistics and Professor Brian Cullis is funded by CSIRO and the Grains Research Development Corporation. It has formal partnerships with the NZ Ministry of Health and the Australian Market and Social Research Society. \r\n \r\n\r\nThe themes that underpin the research at NIASRA are:\r\n\r\n- statistical design - developing efficient methods of obtaining relevant and reliable data in surveys, experiments, and other data collections;\r\n- complexity of data arising from observations in large scale real populations – often involving hierarchical or auto-correlated data - and computational methods to handle such data; and\r\n- working with major organisations on significant problems. \r\n \r\nInternationally competitive areas of methodological research include: statistical design - survey and experimental design; analysis of complex data from complex populations - survey, biometric, environmental, longitudinal, spatial, aggregated data, and also combining data; statistical modelling – methods for spatial, temporal and spatial-temporal data, semi-parametric and nonparametric methods, time series, quasi-likelihood, multi-level modelling, Bayesian analysis, and estimating equations;\r\ndata quality and survey methods - particularly telephone, household, internet and environmental surveys;\r\nstatistical confidentiality.\r\n \r\nNIASRA offers postgraduate and professional education courses and programs that build on our world-class staff, extensive experience and industry collaborations.' |
ckan.site_custom_css | 'a[href]:after {\r\n content: none;\r\n}\r\n.hero {\r\n min-height:0px;\r\n}' |
ckan.site_description | 'National Institute for Applied Statistics Research Australia' |
ckan.site_id | 'niasra-ckan' |
ckan.site_intro_text | 'This data portal hosts data of interest to, or used in projects by, researchers at the National Institute of Applied Research Australia (NIASRA), based at the University of Wollongong. All data available to the public can be considered open source. The open data portal software employed here is `CKAN`; more information can be found at http://ckan.org/.' |
ckan.site_logo | 'niasra-logo.png' |
ckan.site_title | 'NIASRA' |
ckan.site_url | 'https://hpc.niasra.uow.edu.au' |
ckan.static_max_age | 3600 |
ckan.storage_path | '/var/lib/ckan/default' |
ckan.template_title_delimiter | '-' |
ckan.theme | 'css/main' |
ckan.upload.group.mimetypes | ['image/png', 'image/gif', 'image/jpeg'] |
ckan.upload.group.types | ['image'] |
ckan.upload.user.mimetypes | ['image/png', 'image/gif', 'image/jpeg'] |
ckan.upload.user.types | ['image'] |
ckan.user.last_active_interval | 600 |
ckan.user_list_limit | 20 |
ckan.user_reset_landing_page | 'home.index' |
ckan.valid_url_schemes | ['http', 'https', 'ftp'] |
ckan.views.default_views | ['image_view', 'datatables_view'] |
ckan.webassets.path | '' |
ckan.webassets.url | '/webassets' |
ckan.webassets.use_x_sendfile | False |
clear_logo_upload | '' |
computed_template_paths | ['/usr/lib/ckan/default/lib/python3.10/site-packages/ckanext/activity/templates', '/usr/lib/ckan/default/lib/python3.10/site-packages/ckanext/datastore/templates', '/usr/lib/ckan/default/lib/python3.10/site-packages/ckan/templates'] |
config.mode | 'strict' |
DEBUG | True |
debug | True |
DEBUG_TB_ENABLED | True |
DEBUG_TB_HOSTS | () |
DEBUG_TB_INTERCEPT_REDIRECTS | False |
DEBUG_TB_PANELS | ('flask_debugtoolbar.panels.versions.VersionDebugPanel', 'flask_debugtoolbar.panels.timer.TimerDebugPanel', 'flask_debugtoolbar.panels.headers.HeaderDebugPanel', 'flask_debugtoolbar.panels.request_vars.RequestVarsDebugPanel', 'flask_debugtoolbar.panels.config_vars.ConfigVarsDebugPanel', 'flask_debugtoolbar.panels.template.TemplateDebugPanel', 'flask_debugtoolbar.panels.sqlalchemy.SQLAlchemyDebugPanel', 'flask_debugtoolbar.panels.logger.LoggingPanel', 'flask_debugtoolbar.panels.route_list.RouteListDebugPanel', 'flask_debugtoolbar.panels.profiler.ProfilerDebugPanel', 'flask_debugtoolbar.panels.g.GDebugPanel') |
email_to | '' |
error_email_from | '' |
EXPLAIN_TEMPLATE_LOADING | False |
extra_public_paths | '' |
extra_template_paths | '' |
here | '/etc/ckan/default' |
licenses_group_url | '' |
logo_upload | '' |
MAX_CONTENT_LENGTH | None |
MAX_COOKIE_SIZE | 4093 |
package_edit_return_url | '' |
package_hide_extras | [] |
package_new_return_url | '' |
PERMANENT_SESSION_LIFETIME | 31536000 |
plugin_public_paths | ['/usr/lib/ckan/default/lib/python3.10/site-packages/ckanext/activity/public'] |
plugin_template_paths | ['/usr/lib/ckan/default/lib/python3.10/site-packages/ckanext/activity/templates', '/usr/lib/ckan/default/lib/python3.10/site-packages/ckanext/datastore/templates'] |
PREFERRED_URL_SCHEME | 'http' |
PROPAGATE_EXCEPTIONS | None |
REMEMBER_COOKIE_DOMAIN | None |
REMEMBER_COOKIE_DURATION | 31536000 |
REMEMBER_COOKIE_HTTPONLY | True |
REMEMBER_COOKIE_NAME | 'remember_token' |
REMEMBER_COOKIE_PATH | '/' |
REMEMBER_COOKIE_REFRESH_EACH_REQUEST | False |
REMEMBER_COOKIE_SAMESITE | 'None' |
REMEMBER_COOKIE_SECURE | False |
search.facets | ['organization', 'groups', 'tags', 'res_format', 'license_id'] |
search.facets.default | 10 |
search.facets.limit | 50 |
SECRET_KEY | 'OuonVd5Md43IixzaojMJc6OV1Pk' |
SEND_FILE_MAX_AGE_DEFAULT | None |
SERVER_NAME | None |
SESSION_COOKIE_DOMAIN | '' |
SESSION_COOKIE_HTTPONLY | True |
SESSION_COOKIE_NAME | 'ckan' |
SESSION_COOKIE_PATH | '' |
SESSION_COOKIE_SAMESITE | 'Lax' |
SESSION_COOKIE_SECURE | False |
SESSION_KEY_PREFIX | 'session:' |
SESSION_PERMANENT | True |
SESSION_REFRESH_EACH_REQUEST | False |
SESSION_TYPE | 'cookie' |
SESSION_USE_SIGNER | False |
smtp.mail_from | '' |
smtp.password | '' |
smtp.reply_to | '' |
smtp.server | 'localhost' |
smtp.starttls | False |
smtp.user | '' |
solr_password | '' |
solr_timeout | 60 |
solr_url | 'http://192.168.122.4:8983/solr/ckan' |
solr_user | '' |
sqlalchemy.pool_pre_ping | True |
sqlalchemy.url | 'postgresql://ckan_default:ckanniasra123!@localhost/ckan_default' |
SQLALCHEMY_RECORD_QUERIES | True |
TEMPLATES_AUTO_RELOAD | None |
TESTING | False |
testing | False |
TRAP_BAD_REQUEST_ERRORS | None |
TRAP_HTTP_EXCEPTIONS | False |
use | 'egg:ckan' |
USE_X_SENDFILE | False |
WTF_CSRF_CHECK_DEFAULT | True |
WTF_CSRF_ENABLED | True |
WTF_CSRF_FIELD_NAME | '_csrf_token' |
WTF_CSRF_HEADERS | ['X-CSRFToken', 'X-CSRF-Token'] |
WTF_CSRF_METHODS | {'PUT', 'DELETE', 'POST', 'PATCH'} |
WTF_CSRF_SECRET_KEY | 'string:OuonVd5Md43IixzaojMJc6OV1Pk' |
WTF_CSRF_SSL_STRICT | True |
WTF_CSRF_TIME_LIMIT | 3600 |
WTF_I18N_ENABLED | True |
Variable | Value |
---|---|
csrf_token | <function generate_csrf at 0x7fe10bdccee0> |
current_user | <ckan.model.user.AnonymousUser object at 0x7fe106299ba0> |
g | <flask.g of 'ckan.config.middleware.flask_app'> |
request | <Request 'http://192.168.122.4/dataset/groups/global-elus' [GET]> |
session | <SecureCookieSession {'_csrf_token': '03496353c566f4c26bfb90e2a65f7628e212927a', '_permanent': True, '_fresh': False}> |
Variable | Value |
---|---|
csrf_token | <function generate_csrf at 0x7fe10bdccee0> |
current_user | <ckan.model.user.AnonymousUser object at 0x7fe106299ba0> |
dataset_type | 'dataset' |
g | <flask.g of 'ckan.config.middleware.flask_app'> |
group_dropdown | [] |
pkg_dict | {'author': 'Sayre, R., J. Dangermond, C. Frye, R. Vaughan, P. Aniello, S. Breyer, D. Cribbs, D. Hopkins, R. Nauman, W. Derrenbacher, D.Wright, C. Brown, C. Convis, J. Smith, L. Benson, D. Paco VanSistine, H. Warner, J. Cress, J. Danielson, S. Hamann, T. Cecere, A. Reddy, D. Burton, A. Grosse, D. True, M. Metzger, J. Hartmann, N. Moosdorf, H. Dürr, M. Paganini, P. DeFourny, O. Arino, S. Maynard, M. Anderson, and P. Comer. ', 'author_email': '', 'creator_user_id': '0ed6839a-e7cd-4504-9192-fa73b3cc8756', 'id': '03a2ff61-3021-405b-bf0b-614f3fa2ce20', 'isopen': False, 'license_id': 'cc-nc', 'license_title': 'Creative Commons Non-Commercial (Any)', 'license_url': 'http://creativecommons.org/licenses/by-nc/2.0/', 'maintainer': 'Andrew Zammit Mangion', 'maintainer_email': 'azm [at] uow.edu.au', 'metadata_created': '2015-01-25T02:11:46.436349', 'metadata_modified': '2017-02-06T02:35:59.602201', 'name': 'global-elus', 'notes': 'Description:\r\n-------\r\n\r\nIn response to the need and an intergovernmental commission for a high resolution and data-derived global ecosystem map, land surface elements of global ecological pattern were characterised in an ecophysiographic stratification of the planet. The stratification produced 3,923 terrestrial ecological land units (ELUs) at a base resolution of 250 meters. The ELUs were derived from data on land surface features in a three step approach. The first step involved acquiring or developing four global raster datalayers representing the primary components of ecosystem structure: bioclimate, landform, lithology, and land cover. These datasets generally represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. The second step involved a spatial combination of the four inputs into a single, new integrated raster dataset where every cell represents a combination of values from the bioclimate, landforms, lithology, and land cover datalayers. This foundational global raster datalayer, called ecological facets (EFs), contains 47,650 unique combinations of the four inputs. The third step involved an aggregation of the EFs into the 3,923 ELUs.\r\n\r\n\r\n\r\nUse constraint:\r\n-------\r\n\r\nAlthough these data have been processed successfully on a computer system at the U.S. Geological Survey, no warranty expressed or implied is made regarding the display or utility of the data on any other system, or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. The U.S. Geological Survey shall not be held liable for improper or incorrect use of the data described and/or contained herein. We make every effort to provide and maintain accurate, complete, usable, and timely information on our Web sites. These data and information are provided with the understanding that they are not guaranteed to be correct or complete. Users are cautioned to consider carefully the provisional nature of these data and information before using them for decisions that concern personal or public safety or the conduct of business that involves substantial monetary or operational consequences. Conclusions drawn from, or actions undertaken on the basis of, such data and information are the sole responsibility of the user. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government.\r\n\r\nData quality:\r\n-----\r\n\r\nThe primary accuracy assessment approach was to compare EFs at randomly generated points to their corresponding locations on high resolution imagery. This match of EFs to imagery was generally very high, with the following level of confirmation observed: Africa, 91%; California, 98%; Australia, 98%; and elsewhere in North America, 97%. The secondary accuracy assessment approaches included comparing ELUs to their corresponding ecosystem labels on the three GEO continental-scale ecosystem maps for South America, the conterminous United States, and Africa. The results for those comparisons were 88%, 87%, and 94%, for South America, the conterminous United States, and Africa, respectively. The comparison of EFs to other sources of thematic information yielded the following probable matches: Africa (81%), California (88%), Australia (96%) and elsewhere in North America (93%). Finally, for the Degree Confluence project points, a 100% match between the EFs and the VGI (photos and descriptions) was observed for Australia, and a 98% match was observed for elsewhere in North America.\r\n\r\nThe quality of the data used in the global stratification will obviously influence the quality of the derived ecosystem products, and anomalous values were found in each of the input layers. While some of these data quality issues are discussed below, it is important to first note that both the input layers and the output products should be considered as collaborative best efforts and works in progress, rather than definitive, current, and complete representations of their themes. The production of any high resolution, globally comprehensive datalayer that characterises a particular feature of the environment is an ambitious and sometimes very difficult undertaking. These efforts to develop and disseminate best available datasets are appreciated by the scientific community, and making the information broadly available is the best way to ensure it can be improved over time. Identification of anomalous values and other data quality issues in underlying data is important for both the understanding of unexpected results, and for the improvement of the input datasets. The bioclimates layer, as mentioned, represents an interpolated data surface from point observations obtained at meteorological stations. Some areas of the planet are not well-covered by weather stations, and the modeled climate regions in those areas (e.g. western Sahara Desert region) were developed from very little data. Moreover, we felt the original bioclimate regions were underrepresentative of aridity, and we modified the data accordingly. The landforms layer was built from a 250 m global DEM, and 250 m was the base resolution of the effort, given the big data nature of the effort and the difficulty of working at finer spatial resolutions. Nevertheless, 90 m and 30 m global DEMs do exist, and a finer spatial resolution global landforms layer could be developed. The global lithology layer, built as a compendium of a variety of best available regional and national scale lithology datasets, lacks complete attribution at all levels of the hierarchy, and does not attempt to reconcile or harmonise classes across maps from adjacent geographies produced by different organizations. The above-mentioned limitations in the data really represent opportunities for collective improvements in the characterization of ecologically important Earth surface features, and we anticipate working with these data providers and others in future collaborations to advance the quality, currency, resolution, and accessibility of Earth science data.\r\n\r\nProcedure:\r\n-----\r\n\r\nThe fundamental approach undertaken was to stratify the Earth into physically distinct areas with their associated land cover. The stratification was executed as a geospatial combination of the four input layers (bioclimate, landform, lithology, and land cover) to produce a single raster datalayer where every cell represented a unique combination of the four inputs. Following the production of the foundational raster datalayer, a data reduction step was undertaken to reduce the large number of combinations produced from the union of the input datalayers. The approach was undertaken in three steps. Step One involved acquiring or developing the four input raster base layers (bioclimates, landforms, lithology, and land cover), and reconciling them to a standard, 250 meter global raster framework. The choice of 250 m as the base resolution for the project was based on the availability of a global 250 m digital elevation model (Danielson and Gesch, 2011) whose raster framework could be used as the geospatial reference standard, as well as the desire to improve over the typical square kilometer resolution associated with many global data products (e.g. Gesch et al., 1999; Hijmans et al., 2005). Step Two involved combining all four raster inputs into a single master 250 m global raster datalayer where each cell was the resulting combination of the values from the four input rasters. This foundational raster dataset was called the ecological facets (EFs) layer. Finally, Step Three involved reducing the many classes of EFs resulting from the spatial combination into a more manageable and cartographically approachable number of ecological land units (ELUs). The aggregation was achieved by generalising the input layer attribute classes. This approach to developing global ELUs can be considered as classification neutral in the sense that no a priori ecosystem classification was used to label the mapped entities.\r\n\r\nOther:\r\n----------\r\n\r\nFor more user-friendly information on this dataset visit http://blogs.esri.com/esri/esri-insider/2014/12/09/the-first-detailed-ecological-land-unitsmap-in-the-world/. An interactive application for viewing the data is available at http://ecoexplorer.arcgis.com/eco/\r\n\r\nReferences:\r\n---------\r\n\r\nSayre, R., J. Dangermond, C. Frye, R. Vaughan, P. Aniello, S. Breyer, D. Cribbs, D. Hopkins, R. Nauman, W. Derrenbacher, D.Wright, C. Brown, C. Convis, J. Smith, L. Benson, D. Paco VanSistine, H. Warner, J. Cress, J. Danielson, S. Hamann, T. Cecere, A. Reddy, D. Burton, A. Grosse, D. True, M. Metzger, J. Hartmann, N. Moosdorf, H. Dürr, M. Paganini, P. DeFourny, O. Arino, S. Maynard, M. Anderson, and P. Comer. 2014. A New Map of Global Ecological Land Units — An Ecophysiographic Stratification Approach. Washington, DC: Association of American Geographers. 46 pages.', 'num_resources': 1, 'num_tags': 5, 'organization': {'id': '4207b363-dfff-475d-a24c-fd97ca7f9e9a', 'name': 'cei', 'title': 'Centre for Environmental Informatics (CEI)', 'type': 'organization', 'description': '', 'image_url': 'http://niasra.uow.edu.au/content/groups/webasset/@web/@inf/@math/documents/mm/uow170808.png', 'created': '2014-11-25T12:33:11.014268', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '4207b363-dfff-475d-a24c-fd97ca7f9e9a', 'private': False, 'state': 'active', 'title': 'Global Ecological Land Units (ELUs)', 'type': 'dataset', 'url': '', 'version': '', 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2015-01-25T13:12:29.526458', 'datastore_active': False, 'description': '', 'format': 'TIF', 'hash': '', 'id': 'a9361969-8413-4e3b-9423-32262592924c', 'last_modified': None, 'metadata_modified': '2015-01-25T13:12:29.526458', 'mimetype': None, 'mimetype_inner': None, 'name': 'USGS Geosciences and Environmental Change Science Center (GECSC) Outgoing Datasets', 'package_id': '03a2ff61-3021-405b-bf0b-614f3fa2ce20', 'position': 0, 'resource_type': None, 'size': None, 'state': 'active', 'url': 'http://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/', 'url_type': None}], 'tags': [{'display_name': 'bioclimate', 'id': '5b7ad1ae-9d20-4659-b774-c7302c969f4f', 'name': 'bioclimate', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'ecosystems', 'id': '3d088806-ca29-4558-b0a0-6f9b9d685e8e', 'name': 'ecosystems', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'land cover', 'id': 'f8aeb8b0-4202-47ea-a7a6-471bea6a47c0', 'name': 'land cover', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'landforms', 'id': '52c5e391-69d2-48f0-9f3b-cf33c56b4a20', 'name': 'landforms', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'lithology', 'id': '84bd1f5a-8b14-42aa-bc45-73b25c1ff5f4', 'name': 'lithology', 'state': 'active', 'vocabulary_id': None}], 'extras': [], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []} |
request | <Request 'http://192.168.122.4/dataset/groups/global-elus' [GET]> |
session | <SecureCookieSession {'_csrf_token': '03496353c566f4c26bfb90e2a65f7628e212927a', '_permanent': True, '_fresh': False}> |
The toolbar was unable to fetch the SQLAlchemy queries for this request. To enable the SQLAlchemy query display, please:
The Flask-SQLAlchemy extension needs to be configured for this application. Please see the Flask-SQLAlchemy documentation for details.
No messages logged.
URL route | Endpoint name | HTTP methods | Is alias | Redirect to |
---|---|---|---|---|
/ | home.index | GET, HEAD, OPTIONS | False | None |
/<path:filename> | static | GET, HEAD, OPTIONS | False | None |
/about | home.about | GET, HEAD, OPTIONS | False | None |
/api/ | api.get_api | GET, HEAD, OPTIONS | False | None |
/api/<int(min=1, max=2):ver>/i18n/<lang> | api.i18n_js_translations | GET, HEAD, OPTIONS | False | None |
/api/<int(min=1, max=2):ver>/util/dataset/autocomplete | api.dataset_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/<int(min=1, max=2):ver>/util/group/autocomplete | api.group_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/<int(min=1, max=2):ver>/util/organization/autocomplete | api.organization_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/<int(min=1, max=2):ver>/util/resource/format_autocomplete | api.format_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/<int(min=1, max=2):ver>/util/snippet/<snippet_path> | api.snippet | GET, HEAD, OPTIONS | False | None |
/api/<int(min=1, max=2):ver>/util/tag/autocomplete | api.tag_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/<int(min=1, max=2):ver>/util/user/autocomplete | api.user_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/<int(min=1, max=3):ver> | api.get_api | GET, HEAD, OPTIONS | False | None |
/api/<int(min=3, max=3):ver>/action/<logic_function> | api.action | GET, HEAD, OPTIONS, POST | False | None |
/api/action/<logic_function> | api.action | GET, HEAD, OPTIONS, POST | False | None |
/api/i18n/<lang> | api.i18n_js_translations | GET, HEAD, OPTIONS | False | None |
/api/util/dataset/autocomplete | api.dataset_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/util/group/autocomplete | api.group_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/util/organization/autocomplete | api.organization_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/util/resource/format_autocomplete | api.format_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/util/snippet/<snippet_path> | api.snippet | GET, HEAD, OPTIONS | False | None |
/api/util/tag/autocomplete | api.tag_autocomplete | GET, HEAD, OPTIONS | False | None |
/api/util/user/autocomplete | api.user_autocomplete | GET, HEAD, OPTIONS | False | None |
/ckan-admin/ | admin.index | GET, HEAD, OPTIONS | False | None |
/ckan-admin/config | admin.config | GET, HEAD, OPTIONS, POST | False | None |
/ckan-admin/reset_config | admin.reset_config | GET, HEAD, OPTIONS, POST | False | None |
/ckan-admin/trash | admin.trash | GET, HEAD, OPTIONS, POST | False | None |
/ckan/_debug_toolbar/static/<path:filename> | _debug_toolbar.static | GET, HEAD, OPTIONS | False | None |
/dashboard/ | activity.dashboard | GET, HEAD, OPTIONS | False | None |
/dashboard/datasets | dashboard.datasets | GET, HEAD, OPTIONS | False | None |
/dashboard/groups | dashboard.groups | GET, HEAD, OPTIONS | False | None |
/dashboard/organizations | dashboard.organizations | GET, HEAD, OPTIONS | False | None |
/dataset/ | dataset.search | GET, HEAD, OPTIONS | False | None |
/dataset/<id> | dataset.read | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/dictionary/<resource_id> | datastore.dictionary | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/history/<activity_id> | activity.package_history | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id> | dataset_resource.read | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id> | resource.read | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/delete | dataset_resource.delete | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resource/<resource_id>/delete | resource.delete | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resource/<resource_id>/download | dataset_resource.download | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/download | resource.download | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/download/<filename> | dataset_resource.download | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/download/<filename> | resource.download | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/edit | dataset_resource.edit | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resource/<resource_id>/edit | resource.edit | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resource/<resource_id>/edit_view/<view_id> | dataset_resource.edit_view | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resource/<resource_id>/edit_view/<view_id> | resource.edit_view | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resource/<resource_id>/new_view | dataset_resource.edit_view | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resource/<resource_id>/new_view | resource.edit_view | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resource/<resource_id>/view | dataset_resource.view | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/view | resource.view | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/view/<view_id> | dataset_resource.view | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/view/<view_id> | resource.view | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/views | dataset_resource.views | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/<resource_id>/views | resource.views | GET, HEAD, OPTIONS | False | None |
/dataset/<id>/resource/new | dataset_resource.new | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resource/new | resource.new | GET, HEAD, OPTIONS, POST | False | None |
/dataset/<id>/resources/<resource_id>/history/<activity_id> | activity.resource_history | GET, HEAD, OPTIONS | False | None |
/dataset/activity/<id> | activity.package_activity | GET, HEAD, OPTIONS | False | None |
/dataset/changes/<id> | activity.package_changes | GET, HEAD, OPTIONS | False | None |
/dataset/changes_multiple | activity.package_changes_multiple | GET, HEAD, OPTIONS | False | None |
/dataset/collaborators/<id> | dataset.collaborators_read | GET, HEAD, OPTIONS | False | None |
/dataset/collaborators/<id>/delete/<user_id> | dataset.collaborator_delete | GET, HEAD, OPTIONS, POST | False | None |
/dataset/collaborators/<id>/new | dataset.new_collaborator | GET, HEAD, OPTIONS, POST | False | None |
/dataset/delete/<id> | dataset.delete | GET, HEAD, OPTIONS, POST | False | None |
/dataset/edit/<id> | dataset.edit | GET, HEAD, OPTIONS, POST | False | None |
/dataset/follow/<id> | dataset.follow | OPTIONS, POST | False | None |
/dataset/followers/<id> | dataset.followers | GET, HEAD, OPTIONS | False | None |
/dataset/groups/<id> | dataset.groups | GET, HEAD, OPTIONS, POST | False | None |
/dataset/new | dataset.new | GET, HEAD, OPTIONS, POST | False | None |
/dataset/resources/<id> | dataset.resources | GET, HEAD, OPTIONS | False | None |
/dataset/unfollow/<id> | dataset.unfollow | OPTIONS, POST | False | None |
/datastore/dump/<resource_id> | datastore.dump | GET, HEAD, OPTIONS | False | None |
/feeds/custom.atom | feeds.custom | GET, HEAD, OPTIONS | False | None |
/feeds/dataset.atom | feeds.general | GET, HEAD, OPTIONS | False | None |
/feeds/group/<string:id>.atom | feeds.group | GET, HEAD, OPTIONS | False | None |
/feeds/organization/<string:id>.atom | feeds.organization | GET, HEAD, OPTIONS | False | None |
/feeds/tag/<string:id>.atom | feeds.tag | GET, HEAD, OPTIONS | False | None |
/group/ | group.index | GET, HEAD, OPTIONS | False | None |
/group/<id> | group.read | GET, HEAD, OPTIONS | False | None |
/group/about/<id> | group.about | GET, HEAD, OPTIONS | False | None |
/group/activity/<id> | activity.group_activity | GET, HEAD, OPTIONS | False | None |
/group/admins/<id> | group.admins | GET, HEAD, OPTIONS, POST | False | None |
/group/bulk_process/<id> | group.bulk_process | GET, HEAD, OPTIONS, POST | False | None |
/group/changes/<id> | activity.group_changes | GET, HEAD, OPTIONS | False | None |
/group/changes_multiple | activity.group_changes_multiple | GET, HEAD, OPTIONS | False | None |
/group/delete/<id> | group.delete | GET, HEAD, OPTIONS, POST | False | None |
/group/edit/<id> | group.edit | GET, HEAD, OPTIONS, POST | False | None |
/group/follow/<id> | group.follow | OPTIONS, POST | False | None |
/group/followers/<id> | group.followers | GET, HEAD, OPTIONS, POST | False | None |
/group/manage_members/<id> | group.manage_members | GET, HEAD, OPTIONS, POST | False | None |
/group/member_delete/<id> | group.member_delete | GET, HEAD, OPTIONS, POST | False | None |
/group/member_dump/<id> | group.member_dump | GET, HEAD, OPTIONS | False | None |
/group/member_new/<id> | group.member_new | GET, HEAD, OPTIONS, POST | False | None |
/group/members/<id> | group.members | GET, HEAD, OPTIONS | False | None |
/group/new | group.new | GET, HEAD, OPTIONS, POST | False | None |
/group/unfollow/<id> | group.unfollow | OPTIONS, POST | False | None |
/no/ | home.redirect_locale | GET, HEAD, OPTIONS | False | None |
/no/<path:path> | home.redirect_locale | GET, HEAD, OPTIONS | False | None |
/organization/ | organization.index | GET, HEAD, OPTIONS | False | None |
/organization/<id> | organization.read | GET, HEAD, OPTIONS | False | None |
/organization/about/<id> | organization.about | GET, HEAD, OPTIONS | False | None |
/organization/activity/<id> | activity.organization_activity | GET, HEAD, OPTIONS | False | None |
/organization/admins/<id> | organization.admins | GET, HEAD, OPTIONS, POST | False | None |
/organization/bulk_process/<id> | organization.bulk_process | GET, HEAD, OPTIONS, POST | False | None |
/organization/changes/<id> | activity.organization_changes | GET, HEAD, OPTIONS | False | None |
/organization/changes_multiple | activity.organization_changes_multiple | GET, HEAD, OPTIONS | False | None |
/organization/delete/<id> | organization.delete | GET, HEAD, OPTIONS, POST | False | None |
/organization/edit/<id> | organization.edit | GET, HEAD, OPTIONS, POST | False | None |
/organization/follow/<id> | organization.follow | OPTIONS, POST | False | None |
/organization/followers/<id> | organization.followers | GET, HEAD, OPTIONS, POST | False | None |
/organization/manage_members/<id> | organization.manage_members | GET, HEAD, OPTIONS, POST | False | None |
/organization/member_delete/<id> | organization.member_delete | GET, HEAD, OPTIONS, POST | False | None |
/organization/member_dump/<id> | organization.member_dump | GET, HEAD, OPTIONS | False | None |
/organization/member_new/<id> | organization.member_new | GET, HEAD, OPTIONS, POST | False | None |
/organization/members/<id> | organization.members | GET, HEAD, OPTIONS | False | None |
/organization/new | organization.new | GET, HEAD, OPTIONS, POST | False | None |
/organization/unfollow/<id> | organization.unfollow | OPTIONS, POST | False | None |
/robots.txt | home.robots_txt | GET, HEAD, OPTIONS | False | None |
/testing/primer | util.primer | GET, HEAD, OPTIONS | False | None |
/user/ | user.index | GET, HEAD, OPTIONS | False | None |
/user/<id> | user.read | GET, HEAD, OPTIONS | False | None |
/user/<id>/api-tokens | user.api_tokens | GET, HEAD, OPTIONS, POST | False | None |
/user/<id>/api-tokens/<jti>/revoke | user.api_token_revoke | OPTIONS, POST | False | None |
/user/<id>/groups | user.read_groups | GET, HEAD, OPTIONS | False | None |
/user/<id>/organizations | user.read_organizations | GET, HEAD, OPTIONS | False | None |
/user/_logout | user.logout | GET, HEAD, OPTIONS, POST | False | None |
/user/activity/<id> | activity.user_activity | GET, HEAD, OPTIONS | False | None |
/user/delete/<id> | user.delete | GET, HEAD, OPTIONS, POST | False | None |
/user/edit | user.edit | GET, HEAD, OPTIONS, POST | False | None |
/user/edit/<id> | user.edit | GET, HEAD, OPTIONS, POST | False | None |
/user/follow/<id> | user.follow | OPTIONS, POST | False | None |
/user/followers/<id> | user.followers | GET, HEAD, OPTIONS | False | None |
/user/logged_out_redirect | user.logged_out_page | GET, HEAD, OPTIONS | False | None |
/user/login | user.login | GET, HEAD, OPTIONS, POST | False | None |
/user/me | user.me | GET, HEAD, OPTIONS | False | None |
/user/register | user.register | GET, HEAD, OPTIONS, POST | False | None |
/user/reset | user.request_reset | GET, HEAD, OPTIONS, POST | False | None |
/user/reset/<id> | user.perform_reset | GET, HEAD, OPTIONS, POST | False | None |
/user/sysadmin | user.sysadmin | OPTIONS, POST | False | None |
/user/unfollow/<id> | user.unfollow | OPTIONS, POST | False | None |
/util/redirect | util.internal_redirect | GET, HEAD, OPTIONS, POST | False | None |
/webassets/<path:path> | webassets.index | GET, HEAD, OPTIONS | False | None |
/zh_CN/ | home.redirect_locale | GET, HEAD, OPTIONS | False | None |
/zh_CN/<path:path> | home.redirect_locale | GET, HEAD, OPTIONS | False | None |
/zh_TW/ | home.redirect_locale | GET, HEAD, OPTIONS | False | None |
/zh_TW/<path:path> | home.redirect_locale | GET, HEAD, OPTIONS | False | None |
Key | Value |
---|---|
__timer | 1745082792.311184 |
_csrf_token | IjAzNDk2MzUzYzU2NmY0YzI2YmZiOTBlMmE2NWY3NjI4ZTIxMjkyN2Ei.aAPZqA.uGp8TSDlCUHZAdytOt-hYZ3sp1Y |
_flask_babel | namespace(babel_domain=<Domain(None, ['ckan'])>, babel_locale=Locale('en')) |
_login_user | <ckan.model.user.AnonymousUser object at 0x7fe106299ba0> |
_webassets | {'style': [], 'script': [], 'included': {'vendor/htmx', 'vendor/vendor', 'css/main', 'vendor/fontawesome', 'vendor/bootstrap', 'vendor/jquery', 'base/main', 'base/ckan', 'ckanext-activity/activity', 'vendor/select2-css', 'ckanext-activity/activity-css'}} |
author | 192.168.122.1 |
blueprint | dataset |
csrf_field_name | _csrf_token |
debug_toolbar | <flask_debugtoolbar.DebugToolbarExtension object at 0x7fe10ad09690> |
group_dropdown | [] |
login_via_auth_header | True |
pkg_dict | {'author': 'Sayre, R., J. Dangermond, C. Frye, R. Vaughan, P. Aniello, S. Breyer, D. Cribbs, D. Hopkins, R. Nauman, W. Derrenbacher, D.Wright, C. Brown, C. Convis, J. Smith, L. Benson, D. Paco VanSistine, H. Warner, J. Cress, J. Danielson, S. Hamann, T. Cecere, A. Reddy, D. Burton, A. Grosse, D. True, M. Metzger, J. Hartmann, N. Moosdorf, H. Dürr, M. Paganini, P. DeFourny, O. Arino, S. Maynard, M. Anderson, and P. Comer. ', 'author_email': '', 'creator_user_id': '0ed6839a-e7cd-4504-9192-fa73b3cc8756', 'id': '03a2ff61-3021-405b-bf0b-614f3fa2ce20', 'isopen': False, 'license_id': 'cc-nc', 'license_title': 'Creative Commons Non-Commercial (Any)', 'license_url': 'http://creativecommons.org/licenses/by-nc/2.0/', 'maintainer': 'Andrew Zammit Mangion', 'maintainer_email': 'azm [at] uow.edu.au', 'metadata_created': '2015-01-25T02:11:46.436349', 'metadata_modified': '2017-02-06T02:35:59.602201', 'name': 'global-elus', 'notes': 'Description:\r\n-------\r\n\r\nIn response to the need and an intergovernmental commission for a high resolution and data-derived global ecosystem map, land surface elements of global ecological pattern were characterised in an ecophysiographic stratification of the planet. The stratification produced 3,923 terrestrial ecological land units (ELUs) at a base resolution of 250 meters. The ELUs were derived from data on land surface features in a three step approach. The first step involved acquiring or developing four global raster datalayers representing the primary components of ecosystem structure: bioclimate, landform, lithology, and land cover. These datasets generally represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. The second step involved a spatial combination of the four inputs into a single, new integrated raster dataset where every cell represents a combination of values from the bioclimate, landforms, lithology, and land cover datalayers. This foundational global raster datalayer, called ecological facets (EFs), contains 47,650 unique combinations of the four inputs. The third step involved an aggregation of the EFs into the 3,923 ELUs.\r\n\r\n\r\n\r\nUse constraint:\r\n-------\r\n\r\nAlthough these data have been processed successfully on a computer system at the U.S. Geological Survey, no warranty expressed or implied is made regarding the display or utility of the data on any other system, or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. The U.S. Geological Survey shall not be held liable for improper or incorrect use of the data described and/or contained herein. We make every effort to provide and maintain accurate, complete, usable, and timely information on our Web sites. These data and information are provided with the understanding that they are not guaranteed to be correct or complete. Users are cautioned to consider carefully the provisional nature of these data and information before using them for decisions that concern personal or public safety or the conduct of business that involves substantial monetary or operational consequences. Conclusions drawn from, or actions undertaken on the basis of, such data and information are the sole responsibility of the user. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government.\r\n\r\nData quality:\r\n-----\r\n\r\nThe primary accuracy assessment approach was to compare EFs at randomly generated points to their corresponding locations on high resolution imagery. This match of EFs to imagery was generally very high, with the following level of confirmation observed: Africa, 91%; California, 98%; Australia, 98%; and elsewhere in North America, 97%. The secondary accuracy assessment approaches included comparing ELUs to their corresponding ecosystem labels on the three GEO continental-scale ecosystem maps for South America, the conterminous United States, and Africa. The results for those comparisons were 88%, 87%, and 94%, for South America, the conterminous United States, and Africa, respectively. The comparison of EFs to other sources of thematic information yielded the following probable matches: Africa (81%), California (88%), Australia (96%) and elsewhere in North America (93%). Finally, for the Degree Confluence project points, a 100% match between the EFs and the VGI (photos and descriptions) was observed for Australia, and a 98% match was observed for elsewhere in North America.\r\n\r\nThe quality of the data used in the global stratification will obviously influence the quality of the derived ecosystem products, and anomalous values were found in each of the input layers. While some of these data quality issues are discussed below, it is important to first note that both the input layers and the output products should be considered as collaborative best efforts and works in progress, rather than definitive, current, and complete representations of their themes. The production of any high resolution, globally comprehensive datalayer that characterises a particular feature of the environment is an ambitious and sometimes very difficult undertaking. These efforts to develop and disseminate best available datasets are appreciated by the scientific community, and making the information broadly available is the best way to ensure it can be improved over time. Identification of anomalous values and other data quality issues in underlying data is important for both the understanding of unexpected results, and for the improvement of the input datasets. The bioclimates layer, as mentioned, represents an interpolated data surface from point observations obtained at meteorological stations. Some areas of the planet are not well-covered by weather stations, and the modeled climate regions in those areas (e.g. western Sahara Desert region) were developed from very little data. Moreover, we felt the original bioclimate regions were underrepresentative of aridity, and we modified the data accordingly. The landforms layer was built from a 250 m global DEM, and 250 m was the base resolution of the effort, given the big data nature of the effort and the difficulty of working at finer spatial resolutions. Nevertheless, 90 m and 30 m global DEMs do exist, and a finer spatial resolution global landforms layer could be developed. The global lithology layer, built as a compendium of a variety of best available regional and national scale lithology datasets, lacks complete attribution at all levels of the hierarchy, and does not attempt to reconcile or harmonise classes across maps from adjacent geographies produced by different organizations. The above-mentioned limitations in the data really represent opportunities for collective improvements in the characterization of ecologically important Earth surface features, and we anticipate working with these data providers and others in future collaborations to advance the quality, currency, resolution, and accessibility of Earth science data.\r\n\r\nProcedure:\r\n-----\r\n\r\nThe fundamental approach undertaken was to stratify the Earth into physically distinct areas with their associated land cover. The stratification was executed as a geospatial combination of the four input layers (bioclimate, landform, lithology, and land cover) to produce a single raster datalayer where every cell represented a unique combination of the four inputs. Following the production of the foundational raster datalayer, a data reduction step was undertaken to reduce the large number of combinations produced from the union of the input datalayers. The approach was undertaken in three steps. Step One involved acquiring or developing the four input raster base layers (bioclimates, landforms, lithology, and land cover), and reconciling them to a standard, 250 meter global raster framework. The choice of 250 m as the base resolution for the project was based on the availability of a global 250 m digital elevation model (Danielson and Gesch, 2011) whose raster framework could be used as the geospatial reference standard, as well as the desire to improve over the typical square kilometer resolution associated with many global data products (e.g. Gesch et al., 1999; Hijmans et al., 2005). Step Two involved combining all four raster inputs into a single master 250 m global raster datalayer where each cell was the resulting combination of the values from the four input rasters. This foundational raster dataset was called the ecological facets (EFs) layer. Finally, Step Three involved reducing the many classes of EFs resulting from the spatial combination into a more manageable and cartographically approachable number of ecological land units (ELUs). The aggregation was achieved by generalising the input layer attribute classes. This approach to developing global ELUs can be considered as classification neutral in the sense that no a priori ecosystem classification was used to label the mapped entities.\r\n\r\nOther:\r\n----------\r\n\r\nFor more user-friendly information on this dataset visit http://blogs.esri.com/esri/esri-insider/2014/12/09/the-first-detailed-ecological-land-unitsmap-in-the-world/. An interactive application for viewing the data is available at http://ecoexplorer.arcgis.com/eco/\r\n\r\nReferences:\r\n---------\r\n\r\nSayre, R., J. Dangermond, C. Frye, R. Vaughan, P. Aniello, S. Breyer, D. Cribbs, D. Hopkins, R. Nauman, W. Derrenbacher, D.Wright, C. Brown, C. Convis, J. Smith, L. Benson, D. Paco VanSistine, H. Warner, J. Cress, J. Danielson, S. Hamann, T. Cecere, A. Reddy, D. Burton, A. Grosse, D. True, M. Metzger, J. Hartmann, N. Moosdorf, H. Dürr, M. Paganini, P. DeFourny, O. Arino, S. Maynard, M. Anderson, and P. Comer. 2014. A New Map of Global Ecological Land Units — An Ecophysiographic Stratification Approach. Washington, DC: Association of American Geographers. 46 pages.', 'num_resources': 1, 'num_tags': 5, 'organization': {'id': '4207b363-dfff-475d-a24c-fd97ca7f9e9a', 'name': 'cei', 'title': 'Centre for Environmental Informatics (CEI)', 'type': 'organization', 'description': '', 'image_url': 'http://niasra.uow.edu.au/content/groups/webasset/@web/@inf/@math/documents/mm/uow170808.png', 'created': '2014-11-25T12:33:11.014268', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '4207b363-dfff-475d-a24c-fd97ca7f9e9a', 'private': False, 'state': 'active', 'title': 'Global Ecological Land Units (ELUs)', 'type': 'dataset', 'url': '', 'version': '', 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2015-01-25T13:12:29.526458', 'datastore_active': False, 'description': '', 'format': 'TIF', 'hash': '', 'id': 'a9361969-8413-4e3b-9423-32262592924c', 'last_modified': None, 'metadata_modified': '2015-01-25T13:12:29.526458', 'mimetype': None, 'mimetype_inner': None, 'name': 'USGS Geosciences and Environmental Change Science Center (GECSC) Outgoing Datasets', 'package_id': '03a2ff61-3021-405b-bf0b-614f3fa2ce20', 'position': 0, 'resource_type': None, 'size': None, 'state': 'active', 'url': 'http://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/', 'url_type': None}], 'tags': [{'display_name': 'bioclimate', 'id': '5b7ad1ae-9d20-4659-b774-c7302c969f4f', 'name': 'bioclimate', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'ecosystems', 'id': '3d088806-ca29-4558-b0a0-6f9b9d685e8e', 'name': 'ecosystems', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'land cover', 'id': 'f8aeb8b0-4202-47ea-a7a6-471bea6a47c0', 'name': 'land cover', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'landforms', 'id': '52c5e391-69d2-48f0-9f3b-cf33c56b4a20', 'name': 'landforms', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'lithology', 'id': '84bd1f5a-8b14-42aa-bc45-73b25c1ff5f4', 'name': 'lithology', 'state': 'active', 'vocabulary_id': None}], 'extras': [], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []} |
remote_addr | 192.168.122.1 |
user | |
userobj | |
view | groups |